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Abstract

The geometric morphometric (GM) analysis of complex anatomical structures is an ever more
powerful tool to study biological variability, adaptation and evolution. Here, we propose a new
method (combinland), developed in R, meant to combine the morphological information contained
in different landmark coordinate sets into a single dataset, under a GM context. combinland builds
a common ordination space taking into account the entire shape information encoded in the start-
ing configurations. We applied combinland to a Primate case study including 133 skulls belonging
to 14 species. On each specimen, we simulated photo acquisitions converting the 3D landmark
sets into six 2D configurations along standard anatomical views. The application of combinland
shows statistically negligible differences in the ordination space compared to that of the original
3D objects, in contrast to a previous method meant to address the same issue. Hence, we argue
combinland allows to correctly retrieve 3D-quality statistical information from 2D landmark con-
figurations. This makes combinland a viable alternative when the extraction of 3D models is not
possible, recommended, or too expensive, and to make full use of disparate sources (and views) of
morphological information regarding the same specimens. The code and examples for the applic-
ation of combinland are available in the Arothron R package.

Introduction
Ever since Blumenbach et al. (1865) the study of cranial morphology
makes use of linear measurements allowing to compare individuals
and species. The later development of geometric morphometrics (GM)
paved the way for the study of morphological variation avoiding to re-
duce “shape” down to a set of linear measurements (or ratios) of some
sort (Rohlf, 2000). GM is much more accurate of linear measurements
as a shape descriptor. Consequently, GM represents the most common
method to quantify size and shape variations in biological and paleo-
biological applications (Rohlf and Marcus, 1993; Jungers et al., 1995;
Adams and Rohlf, 2004; Adams et al., 2013; Piras et al., 2009, 2010,
2014; Sansalone et al., 2015; Neaux et al., 2018).
Under GM, either two- (2D) or three-dimensional (3D) configura-

tions of landmarks are recorded. The former (2D) approach relies on
the pictorial representation of the biological objects of interest (e.g.
pictures, X-ray, MRI) (Bastir and Rosas, 2009, 2006; Adams and Rohlf,
2004; DeQuardo et al., 1999), whereas the latter works by recording the
landmarks directly on the three-dimensional object, as represented by
either the real item of interest (i.e. using 3D digitizers) or by digital re-
constructions acquired through computer tomography, laser scanning,
or photogrammetry (Profico et al., 2018a; Olsen and Westneat, 2015;
Weber, 2015; Bates et al., 2010). One major advantage of 2D over 3D
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data is that they are more easily acquired visiting museum collections
or any other repository and a wealth of 2D data (pictures) are readily
available online through published sources. The acquisition of 2D data
is fast and relatively inexpensive, so that sample size almost always
rises above those typical for 3D studies. During the last decades the in-
creased availability of 3D digital repositories is spurring interest on 3D
geometric morphometrics (Cardini, 2014; Davies et al., 2017). This is
welcome since the morphological information that comes with 3D ob-
jects is richer and more genuine than with 2D samples, which suffers
from shape distortion due the “parallax problem” (Mullin and Taylor,
2002), and are further limited to a single view of the objects of interest
(Ponton, 2006). Unfortunately, the acquisition of 3D data is still ex-
pensive and time-consuming (Cunningham et al., 2014). Moreover, 3D
models often require post-production to refine the quality of the digital
specimens (e.g. decimation and smoothing procedures, Veneziano et
al., 2018) which further lengthens the data processing time.

In this study, we propose a new statistical approach which combines
multiple 2D datasets into a unique matrix that can be subjected to or-
dination analyses encoding the whole morphological information. The
most straightforward way to test this tool is the recovery of 3D mor-
phological information starting from different 2D views. It must be
emphasized, though, that our approach can be used to combine differ-
ent 2D or 3D configurations or even 2D and 3D configurations together.
It is similarly important to remark that our purpose is not to build the
3D geometry via single 2D views, as done by photogrammetry. Instead,
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Figure 1 – Protocol used to convert a 3D landmark configuration into six di�erent 2D
sets. The midsagittal (in green) and Frankfurt (in red) planes are reported on a Macaca
arctoides 3D model (A). The visible triangles (B) of the mesh and the visible landmarks (C)
from the point of view set on superior view are reported in red and blue respectively. 2D
landmark set with wireframe of a specimen of Macaca arctoides in superior view (D).

we want to build a common ordination space starting from shapes ac-
quired with different number of landmarks in both 2D or 3D.
The method (“combinland”), is based on a technique originally pro-

posed by Adams (1999). combinland works by merging the morpho-
logical information obtained from the Generalized Procrustes Analysis
(GPA) of different datasets into a single matrix of coordinates. Dif-
ferently from the traditional method (Adams, 1999; Davis et al., 2016;
Meloro et al., 2017), in combinland we introduced a new size correc-
tion to guarantee a proper combination of multiple landmark config-
urations weighting sizes for the number of landmarks and dimensions.
In addition, in combinland we supply a solution to calculate and plot
the shape variations of each combined landmark configuration associ-
ated to the extreme values of the PC scores, in keeping with the issue
of improving the visualization of shape changes in GM applications
(Klingenberg, 2013). We assessed the performance of combinland us-
ing a 3D dataset from which we derived six 2D datasets (referring to
specific anatomical views) to assess whether the combined 2D inform-
ation compares well to 3D data, considered as “ground truth”. We
provide the R code, embedded in the Arothron R package (Profico
et al., 2019), to apply combinland to 2D datasets.

Materials and methods
3D and 2D datasets: the Primate case study
We sampled, in 3D, 55 landmarks (Fig. S1) over the cranial surfaces of
14 Primate species belonging to Catarrhini (10 species) and Platyrrhini
(4 species) for a total of 133 specimens (see Tab. S2 for details). Start-
ing from the 3D objects, we produced six 2D datasets for each speci-
men, defined along the six main anatomical views (i.e., frontal, super-
ior, inferior, posterior, right lateral and left lateral) used in anthropo-
logy, which refer to the midsagittal and the Frankfurt planes, respect-
ively. The midsagittal plane is defined by the prosthion, bregma and
basion anatomical points. The Frankfurt plane is defined by different
points (here digitized as landmarks): the left orbital (intended as the
lowest point on the orbital rim) and both left and right poria. The left-
and the right-lateral 2D sets (1–2) are defined by projecting the 3D co-
ordinates orthogonally onto the midsagittal plane, the superior and the
inferior sets (3–4) are obtained projecting the 3D set onto the Frankfurt
plane. Finally, the posterior and the anterior sets (5–6) are calculated
in two steps: i) the rotation of the Frankfurt plane of π/2 radians and
ii) projection of the 3D coordinates on the plane.
By using 3D digital models, visible landmarks can be defined with

respect to a point of view (POV) external to the object. Straight lines
are projected from the POV coordinates towards each landmark. If the
projection line intersects the 3D object external surface before reaching
the landmark, the latter is defined as non-visible, or visible otherwise.
The method, referred to as CA-LSE (Computer Assisted Laser Scanner
Emulator) is described in Profico and colleagues (2018b; see Fig. 1).
After defining 2D landmarks configurations, we performed a Gener-

alized Procrustes Analysis (GPA), without scaling, on each 2D set. The

third dimension was intentionally set to zero in such configurations, as
it happens when taking digital pictures of the specimens. The proced-
ure is summarized in Fig. 1. We obtained six 2D datasets of landmark
in left-lateral (N=24), right-lateral (N=24), superior (N=17), inferior
(N=40), posterior (N=16) and anterior (N=20) anatomical views (see
Fig. S3 and Tab. S4). It is crucial to note here that our conversion from
3D into six 2D configurations does not realistically mimic the 2D photo
acquisition of an osteological collection from the different anatomical
views. Our procedure does not simulate the potential effect of Parallax
problem due to the distortion or lens positioning intrinsically present
in photographs (see Discussion section).

The “combinland” method

Under “combinland” separate GPAs are performed for each 2D ana-
tomical view, separately, and scaled to the unit Centroid Size (CS). In
geometric terms the CS represents the quadratic mean of the projec-
tions, along each of them coordinate directions, of the vector difference
between each landmark and the centroid. At this stage, the 2D datasets
are not comparable. In fact, CS cannot be used to compare sizes of
shapes identified by different number of landmarks. A convenient way
to normalize the CS (size correction) is to divide it by the square root
of the number of landmarks times the number of dimensions (as sug-
gested in Dryden and Mardia, 2016, section 2.2.2). This quantity gives
the quadratic mean squared distance of the landmarks to their centroid,
i.e. the k×m components (where k is the number of landmarks and m
is that of dimensions) of the centred configuration matrix. The six cor-
rected (by the number of landmarks) matrices of aligned coordinates
are appended together to compose a single matrix (2DComp), which is
then subjected to principal component analysis (PCA). The PC scores
extracted from 2Dcomp represent the descriptors of the whole morpho-
logical variation encoded in the combined 2D data. The procedure is
summarized in Fig. 2.

In sum, the protocol applied herein consists of 5 steps: i) capturing
the 2D landmark configurations according to the six standard anatom-
ical views, ii) performing a GPA on each of the six 2D datasets, iii) ap-
plying “size correction” to the six sets of aligned coordinates derived
from GPA: this size correction consists in re-multiplying coordinates
(that were originally divided by their proper CS) by the square root of
their number of landmarks (that vary among different configurations)
times their number of dimensions (that in this specific case is always
2, see below), iv) appending the six matrices of corrected coordinates,
v) performing PCA on the new data matrix. Points ii to v represent
combinland.

Figure 2 – The “combinland” method. Landmarks are recorded separately on di�erent
anatomical views (A). GPA is performed on each 2D datasets (B). The 2D sets after GPA are
corrected by the square root of the number of landmarks times the number of dimensions
of each set (red and green: before and after correction, respectively) (C). Merging of the
corrected coordinates (2D datasets) and PCA on the new matrix of coordinates (D).
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To visualize the shape variations for each of the six 2D views associ-
ated to the combined data we used: i) the mean shapes corresponding
to 2D datasets of the coordinates after GPA. The coordinates of these
mean shapes are re-multiplied by the square root of the number of land-
marks of the corresponding 2D view times the number of dimensions.
ii) the sub-matrix corresponding to those landmarks belonging to a par-
ticular 2D view from the eigenvalue matrix coming from the PCA per-
formed on the combined (size-corrected) 2D coordinates correspond-
ing only to the 2D landmarks set that is needed for visualization. iii)
the values of the PC scores for which the visualization is called.

We also compared the shape variations predicted by 3D PCA with
those coming from combinland PCA projecting the PCA-predicted 3D
shapes on the same planes used to obtain 2D landmark sets. To assess
the differences between the shape variations coming from 3D data and
those from 2D combined data we calculated the Procrustes Distances
between the projections of shapes predicted by PCA on true 3D data
and those coming from PCA on combined 2D data.

Geometric morphometrics, centroid size and biological
implications

Size variability affects shape variation in biological structures. Un-
der GM shape is defined as “the geometric information that remains
when location, scale and rotational effects are filtered out from an ob-
ject” (Kendall, 1977). In turn, such geometric information is defined
by the acquisition of the coordinates of landmarks corresponding to
homologous anatomical points. The Generalized Procrustes Analysis
(Gower, 1975) removes the information of the components of location,
scaling and rotational. The size component is habitually defined as
the square root of sum of the squared distances between landmarks
and the centroid of the configuration (Bookstein, 1989). According to
Bookstein (1986)CS is therefore uncorrelated with shape under the as-
sumption that the variation around each landmark mean is represented
by small, independent, identically distributed circular normal errors.
However, this assumption cannot account for the true error distribu-
tions and thus there is no inherently best size measure. In continuum
mechanics, for example, the m-Volume is the most used size measure
(Varano et al., 2018) as it is specifically related to a physical domain
of the body under study (m-Volume has a unit of measurement, CS
does not), a concept that could become very elusive when dealing with
single digitization of points sparse in complex structures. The math-
ematic formulation of CS pretends it is correlated to the “actual size”
of the anatomical traits. However, any size measure should reflect the
true physical size of the object under study. It follows that identical
structures, digitized in different ways, should have or identical or ap-
proximately equal sizes. Nevertheless, the value of CS is influenced
by the total number of landmarks defining the shape and the contribute
made by each landmark is proportional to its squared distance to the
centroid (Fig. 3).

As it stands, the CS increases with increasing number of landmarks
and is influenced by the squared distance of landmarks to the centroid.
Under conventional GM studies this is not relevant, because the same
configuration applies to all specimens. Yet, it becomes relevant when
combining different configurations. To fix this problem, we propose a
different solution from Adams (1999) and Davis et al. (2016), by com-
puting the relative size of different norms in reference to the total di-
mension of the considered norms. In particular, Adams (1999) and
Davis et al. (2016) combine two different views (F and S) each with
their proper sizeCSF andCSS of a digitized structure into a single data-
set that parameterizes the single sizes on their sum (Eq. 1):

CSF =
CSF

CSF +CSS
,

CSS =
CSS

CSF +CSS
,

(1)

where superscript F and S correspond respectively to the F and S rel-
ative components of the centroid size (CS).

Defining each anatomical view as k×m, where k is the number of
landmarks and m is the number of dimensions (2D or 3D) we divided
the CS by

√
km (as proposed in Dryden and Mardia, 2016, section

2.2.2):

CSF =
CSF√
kF mF

,

CSS =
CSS√
kSmS

.
(2)

A simple simulation proves this point. We digitized two circle out-
lines placing 10 and then 100 landmarks, respectively (Fig. 4 a,b).
From each configuration, we generated 300 landmark-wide configur-
ations using the Dryden and Mardia (2016) model (Fig. 4) and cal-
culated the mean relative sizes of each configuration using either our
CS correction (Eq. 2) or using combine.subsets (Eq. 1) function in
geomorph package (Adams and Otárola-Castillo, 2013) which is based
on the approach of Davis et al. (2016).

By using our method, the relative CS for the two datasets are both
equal to 0.50. Themean values of the relativeCS after the application of
Equation 2 (Davis et al., 2016) are equal to 0.24 and 0.76 respectively.
A simulated example
A simulated example shows the efficacy of combinland CS correction.
We started by producing two 2D configurations with a different num-
ber of landmarks. The first dataset is defined starting from an “ir-
regular polygon shape” configuration, the second one from a “circular
shape” configuration. On these shapes we applied non-affine deform-
ation cycles (Piras et al., 2016). The cycles apply a combination of
aspect ratio and bending. This way, we produced 2D datasets of shapes
each with 10 and 200 landmarks from the “irregular” and “circular”
shapes respectively. Successively, we converted the 2D shapes into 3D

Figure 3 – Biplots showing the relation between Centroid Size (CS) and number of landmarks (k) (A). In this example, the structure (a single circle of radius=1) is the same in all of the
10 configurations (where B and C are two examples). On the right the relation between Centroid Size (CS) and distance from centroid (D) is shown. In this example, the structures (two
concentric circles) has been digitized using the same number of landmarks (for a total of 42): the external circles have the same radius (r=1) in all the configurations while the internal
ones are progressively scaled (e.g. E and F, the range of the radii for the internal circles, ri, is bracketed between 0.1 and 0.9). The vertical line shows the CS values of the structure
without the inner circle.
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Figure 4 – Experiment: simulated datasets (for a total of 300 specimens) consisting of two hypothetical anatomical views that possess exactly the same circular shape. The first one (F)
is defined by 10 landmarks, the second one (S) is defined digitizing 100 landmarks. On the right the two CS corrections are reported. The relative CS after the correction published by
Davis and colleagues (2016) is shown as red (F view) and violet (S view) lines. The relative CS after the application of the correction proposed in this work is reported in blue (F view) and
green (S view).

landmark configurations adding a third dimension each, perpendicu-
larly to the x-y and x-z planes respectively, for the two configurations,
centered at the origin (Fig. 5).
From the 2D datasets, we thus have i) a combined version with the

size correction (combinland), ii) a combined version without size cor-
rection iii) a 3D dataset. For each of the three datasets we performed a
PCA after Procrustes registration. In Fig. 6 we reported the three res-
ulting PCA plots.
In order to compare the PCA spaces we adopted the same strategy

used in Varano et al. (2017): we calculated the Riemannian distance
between the shapes identified by the scores of the first two PC scores
(Fig. 6). These shapes are approximately elliptical. In each of the three
analyses the first two PC scores summarize approximately 97% of total
variance. The Riemannian distances between the shapes identified by
the first two PC scores of the 3D dataset and those identified by the
first two PC scores of the combined 2D datasets using combinland is
0.008. This same distance rises to 0.060 without correction. Eventu-
ally, we calculated the geodesic distance of the UPGMA cluster built
using the first two PC scores coming from 3D dataset with those com-
ing from the two combined 2D datasets (see Fig. S5), i.e. with and
without size correction; they are equal to 0.27 and 5.87 respectively.
Figure 7 shows the shapes predicted at max and min values of PC1
and PC2 for the two substructures as predicted by combining the data

Figure 5 – Plot of the first undeformed specimen belonging to the simulated case study.
On the left column the two 2D-landmark configurations (irregular and circular shapes);
these configurations refer to shapes that possess approximately the same physical size.
In the middle the combined 3D landmark configuration shown on XY and XZ axes. At top
right the full combined 3D dataset consisting on the deformation of the first shape after
Procrustes registration. The 3D landmark configuration is also shown (bottom right).

with size correction, without size correction and on 3D data, respect-
ively, showing how close the size-corrected data come to 3D. AMantel
test performed between the PC scores coming from the 3D dataset and
those of PCA that uses combinland is equal to 1. The same test per-
formed between the 3D dataset and the PC scores from combined 2D
data without applying the size correction returns a value equal to 0.95.
Although apparentlyminimal, this result confirms the appropriatedness
of the size correction procedure.

This result is further confirmed by the calculation the Procrustes dis-
tances between the shape variations from 3D data and those calculated
from the 2D data with and without the size correction (Tab. 1). The dif-
ference between the shape variations from 3D and combined 2D data
with size correction calculated at the extremes of the first two PC scores
are negligible (Tab. 1).

Figure 6 – PCA plots performed on the 3D original landmark configuration (top left)
and on the 2D combined landmark configurations without (top right) and with (bottom
left) size correction. At bottom right, the relative sizes of the two 2D combined datasets
compared to the entire configuration resulting by merging them in a single shape. Only the
size-corrected configurations (red dots) appear insensitive to the number of landmarks per
configuration thus returning similar CS values. The same does not apply for non-corrected
configurations (green dots) that give green values approximately four times greater than
the red ones.
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Figure 7 – Shape variations associated at the extremes of the first two principal components for 3D and 2D combined datasets (with and without size correction). To save space we
reported in the same panel the two shape variations of 2D combined data predicted by PC extreme values associated to the irregular and circular shapes. The first two rows show
the shape variations of 3D data, i.e. the irregular and circular shapes, the third row the shape variations corresponding to the combined 2D data without size correction (circular and
irregular shapes on the same panel), the fourth row the shape variation of the combined 2D data with size correction (circular and irregular shapes on the same panel). It can be seen
that a drastic size bias is present in the third row.
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Table 1 – Procrustes distances calculated between 2D projections of shapes predicted at
extremes of the first two PC scores of 3D data and corresponding 2D shapes predicted
by the PCA performed on the combined 2D dataset with (our method) and without size
correction. We reported the values for the two shapes (“Irregular” and “Circular”).

PC score Shape
No size

correction
With size
correction

PC1 min Irregular 0.0105 0.0108
Circular 0.0630 0.0010

PC1 max Irregular 0.0111 0.0090
Circular 0.0087 0.0007

PC2 min Irregular 0.3718 0.0114
Circular 0.1347 0.0001

PC2 max Irregular 0.3747 0.0103
Circular 0.1346 0.0007

Evaluation of combinland performance on Primate skulls
To assess the performance of combinland in the real Primate skull case,
we compared the PCA coming from the 3D data (3D data) with the
PCAon the 2D data processed under combinland and under the strategy
without size correction.
The PC scores of the entire shape of all datasets (3D and 2D) were

subjected to cluster analysis using the Unweighted Pair Group Method
with Arithmetic mean (UPGMA, Sokal and Michener, 1958). We
defined and combined two categorical variables for each specimen:
species and gender. By using UPGMA trees, we checked how well the
2D data reproduces the 3D trees topology. The use of phenetic trees
to assess combinland performance is crucial because the error intro-
duced using 2D data to represent 3D objects can be as large as the shape
distance between two species (Cardini, 2014). The similarity between
2D and 3D clusters was quantified by using both the geodesic and the
edge set distances. The geodesic distance is the sum of the difference
between the corresponding path between two weighted phylogenetic
trees. The edge set distance is computed as sum of the differences
between the number of internal branches and/or inversions between two
weighted phylogenetic trees (Chakerian and Holmes, 2012; Owen and
Provan, 2011).
We scaled the edge length of the trees by imposing an equal (arbit-

rarily unitary) total edge length. The six anatomical views can be com-
bined into smaller subgroups of size n (where n represents the num-
ber of 2D views combined together). For k=6 anatomical views there
are 2k− 1 = 63 possible combinations of 2D sets (from the six each
with only one configuration to the one including all of them). We pro-
duced 63 UPGMA-based cluster analyses, one for each of the 63 pos-
sible combinations. Subsequently, we calculated for each of the 63 UP-
GMA trees the geodesic and the edge set distance from the UPGMA
tree built using the PC scores of the 3D data. Eventually, we evalu-
ated the covariation between the PC scores coming from the 3D and
2D data (with and without landmark’s number correction) by Partial
Least Squares (PLS) analysis (Rohlf and Corti, 2000).
In addition, we performed the Mantel test between the matrix of PC

scores of the 3D data and the PC scores of the combined 2D data (with
and without the “size correction”) appending the two, three, four, five
and six anatomical views generating all the 57 possible combinations.
We further evaluated combinland performance by comparing the

shape variation explained by 3D PCAwith those explained by the com-
bined 2D sets. In detail, we produced six bi-dimensional projections of
3D shape variations predicted at positive and negative extreme values
of the PC scores, applying the same projection protocol used to create
the 2D datasets.
We also compared the eigenvectors coming from separate PCA per-

formed on these two arrays: the first one is related to the shape vari-
ations associated to the extreme values (minimum andmaximum) of the
first three PC scores of the 2D data; the second one refers to the shape
variations of the 3D dataset projected into two-dimensional Cartesian
system. This analysis aims at verifying whether, besides correlation
between scores, the morphologies explained by the ordination meth-

Figure 8 – Cumulative variance explained by the first 5 PCs in the 3D (left) and combined
2D (right) data. The percentage of variance explained by each of the first 5 PCs is reported
in the plot.

ods are actually similar. In addition, we combined these two types
of arrays into one and we performed a PCA. 3D and 2D shapes cor-
responding to the same PC extremes should result in “coupled” data.
We also performed an analysis of evolutionary allometry in Platyrrini,
Cercopithecoidea, Hominoidea evaluating the effect of the same size
regressor (CS from 3D data) on the shape from 3D and 2D datasets
(with and without “size correction”).

Eventually, we compared the shapes of each specimen from the 3D
PCA with those obtained from the combined 2D analyses. The two
datasets consist on the shapes identified by the first 20 PCs in the PC
space of the corresponding analyses (explaining collectively more than
95% of total variance). From the 3D PCA, we calculated for each spe-
cimen six bi-dimensional shapes using the six anatomical views used in
the combined 2D analyses. To quantify the differences between them,
we calculated the partial Procrustes distance normalized on the max-
imum distance allowed (that is

√
2, Varano et al., 2017).

Results
Principal Component Analysis on 3D and 2D data
The first two PC scores of the 3D and 2DComp data explain together
the 53.21% and the 51.45%, respectively, of the total variance (Fig. 8).
In the two plots (3D and 2D) the Cercopithecoidea (Macaca, Papio
and Theropithecus) are located on the positive value of the PC1 close
to the great Apes (Pan, Gorilla and Pongo). New World monkeys (Ce-
bus, Ateles and Alouatta) and hylobatids (Hylobates and Symphalan-
gus) occur at the negative values of the PC1. Along PC2 there is a clear
distinction between the group formed by Pongo and Alouatta from all
other species (Fig. 9).

The morphological variation associated to the first two PCs of 3D
and combined 2D analyses are very similar (Fig. 10). From the anterior
view, the pattern of shape variation along the PC1 is associated with the
maximum height of the face and the relative shape and position of the
piriform aperture: along positive values the face and the nasal aperture
are high. PC2 is mainly associated to facial width: at positive values
the facial complex broadens (Fig. 10). From the posterior view, PC1
captures variation associated to the position of the poria. PC2 records

Figure 9 – Plot of the first two PCs of the 3D (left) and combined 2D Primate data (right).
A convex hull encloses each species: Alouatta caraya in red, Aloutta palliata in orange,
Ateles geo�rey in gold, Cebus albifrons in yellow green, Gorilla gorilla in green, Hylobates
lar in dark green, Macaca arctoides in light blue, Macaca cyclopis in cyan, Pan troglodytes
in light sky blue, Papio hamadryas in blue, Pongo abelii in slate blue, Pongo pygmaeus in
violet, Symphalangus syndactylus in fuchsia and Theropithecus gelada in magenta.
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Figure 10 – Shape variations associated to negative (red) and positive (blue) extreme values
of the first two principal components for the 3D and combined 2D data.

the relative positions of bregma and asteria. Still, a change associated
to the orientation of the foramen magnum seems discriminating among
specimens (Fig. 10). In lateral view, PC1 captures the rate of the alve-
olar prognathism. Along PC2, shape changes associate to the degree
of airorhynchy (Fig. 10).
From the superior view the most prominent shape changes relate to

the lengthening of the skull (PC1) and to the relative position of the
supraorbital region (PC2). At positive values of PC1 the supraorbital
region appears shifted posteriorly (Fig. 10).
Along PC1, from the inferior view, shape change associated to the

anterior shifting of the foramen magnum is well distinct at positive val-
ues of this vector. PC2 records the relative size of the occipital bone,
that is broader at positive values. Also, the relative size of the foramen
magnum is affected: at positive values it appears broader than at neg-
ative values (Fig. 10). These results indicate that combinland provides
realistic shape variation information as compared with the 3D data, at
least when 6 different views are combined together.
Performance of the combinland method
The geodesic and edge set distances calculated on the UPGMA trees
(Fig. S6–S8) produced by using the PC scores are smaller when the
correction for the number of landmarks is applied (Tab. 2) indicating
such correction is appropriate.
As expected, the geodesic and the edge set distances between the

original 3D sample and the combined 2D configurations decrease as

Table 2 – Geodesic and edge set distances calculated between the clustered tree of the 3D
data and the 2D data. We considered the trees built taking into account all the specimens,
the values pooled by species and the values pooled by species and gender. We reported
the average values for 2D combined views. We replicated the analyses with and without
the size correction.

No size correction With size correction
N. of views Geodesic Edge set Geodesic Edge set

1 3.18% 103.33 3.18% 103.33
2 2.81% 91.53 2.54% 84.2
3 2.61% 83.75 2.34% 74.85
4 2.61% 79.06 2.27% 67.73
5 2.59% 75 2.22% 65.67
6 2.77% 80 2.09% 59

Table 3 – First 5 axes of covariation with percentage of the explained covariance (% cov.),
coe�cient of correlation (Corr.) and p-values calculated by performing the PLS between
the PC scores coming from the 3D and 2Dcomp data with and without correction.

No size correction With size correction
PLS axis % cov. Corr. p-value % cov. Corr. p-value

PLS 1 55.551 0.995 0.001 55.551 0.995 0.001
PLS 2 25.248 0.994 0.001 25.074 0.997 0.001
PLS 3 15.964 0.991 0.001 16.462 0.994 0.001
PLS 4 1.308 0.975 0.001 1.301 0.984 0.001
PLS 5 0.38 0.961 0.001 0.376 0.98 0.001

number of anatomical views increases (Tab. 2). These distances are
lower when the correction is applied and become negligible when at
least 4 2D sets are combined.

PLS indicates that the morphological information of the two dataset
types (2D and 3D), expressed in terms of vectors of PC scores, are close
to each other. In fact, the correlation coefficients are close to 1 and the
p-values are always significant. Correlation coefficients are higher for
the 2Dcomp data with the size correction than without it (Tab. 3).

The Mantel test performed between the first four PC scores of 3D
data (more than 75% of the total explained variance) and those 2D data
using combinland is equal to 0.99. The same test applied between the
PC scores of 3D data and 2D combined data without “size correction”
(Adams, 1999 method) returns a value equals to 0.98. We performed
also the Mantel test between the 3D data and 2D combined datasets
(with and without size correction) appending all the 57 possible com-
binations by using six 2D datasets. The results are always better if size
correction is applied (i.e., combinland) as reported in Tab. 4.

After combining the 2D datasets we performed a Procrustes AN-
OVA, by using the function procD.lm of the geomorph R pack-
age, followed by pairwise comparisons of taxonomic groups (Hom-
inoidea, Platyrrhines and Cercopithecoidea) to test for differences
among groups in allometry. The shape variable consists of PC scores,
the size variable (independent variable) consists on centroid sizes from
3D landmark configurations. Using 3D data or combined 2D data stat-
istically significant differences between Cercopithecoidea-Platyrrhines
and Hominoidea-Platyrrhines are always detected (Tab. 5). As shown
in Fig. 11 (bottom left) the shape variations associated with the first
principal component at negative and positive extreme values of the 2D
and 3D data are very close to each other. Eigenvectors corresponding
to the first three PCs of separate PCA are contrasted in the scatterplot
matrix in Fig. 11 bottom right.

The evolutionary allometry test quantifies the relative amount of
shape information (PC scores) attributable to covariation with size.
The aim of this analysis is to evaluate the robustness of combinland
method when specific analyses are performed. We found the outputs
coming from 3D and 2D combined datasets close each other as repor-
ted in Tab. 5.

The distances, expressed as percentage of the maximum distance al-
lowed, between the shapes identified by the first 20 PCs from the 3D
data projected into two-dimensions and the 2D combined datasets are
low, indicating high correlation between the two datasets. The aver-
age distances of the full sample expressed as percentage on each of

Table 4 – The Mantel test performed between the shape information encoded in 3D
data and in combined 2D data with and without size correction. The average values for
Z-statistic combining two, three, four, five and six 2D views are reported.

No size correction With size correction
N. of views Z-statistic p-value Z-statistic p-value

2 0.9 0.01 0.91 0.01
3 0.93 0.01 0.95 0.01
4 0.96 0.01 0.97 0.01
5 0.97 0.01 0.98 0.01
6 0.98 0.01 0.99 0.01
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Figure 11 –Upper row: comparison of the shape variation coming from 3D and 2D datasets
(right-lateral view). Plot of the Cartesian coordinates associated with the minimum and
maximum values of the PC1 in right-lateral view (A and B, 3D data in green and 2D data
in red). Bottom left: PCA plot of the shape variations coming from 3D and 2D data (3D
data in green and 2D data in red) combined together. Bottom right: scatterplot matrix
performed on the eigenvectors (3D and 2D data) referred to the first three PCs (D) and
coming from separate PCA.

the six anatomical views are 2.9% (anterior), 3.2% (posterior), 0.7%
(superior), 5.3% (inferior), 2% (left lateral) and 2% (right lateral) (see
Tab. S9 for full results).

Discussion
In landmark-based geometric morphometrics, shape variability is ana-
lysed through the definition of homologous anatomical points. Such
configuration of landmarks provides the best representation of shape in
the three dimensions. Nonetheless 2D data are muchmore common be-
cause they are easier to collect and/or less expensive, and well-suited to
deal with flat biological objects, like the hemimandibles of vertebrates,
the wings of insects and plants leaves (Meloro et al., 2015; Viscosi and
Cardini, 2011; Klingenberg et al., 1998). Herein, we present a new
R tool which allows merging shape information coming from different
landmark sets. We proposed an example where different 2D views cap-
ture a 3D biological object. Adams (1999) first introduced a method to
combine sets of 2D shape variables belonging to the same specimens.
The relative sizes of the landmark configurations to be appended are
calculated as the ratio of the two subsetsCS. This allows to accomplish
a new PCA, but the visualization of the shape variation associated to
the new PC scores is somewhat complicated as a double step is needed
to resort the relationship between original 2D coordinates and the PC
scores of the combined analysis. Moreover, the ratio of CS values is

Table 5 – Procrustes ANOVA results performed on 3D and 2D combined datasets (with
and without “size correction”) defining the centroid size vector of 3D data as regressor.
We applied the Procrustes ANOVA on three di�erent groups: Platyrrhini, Cercopithecoidea
and Hominoidea.

3D data Combined 2D data
No size

correction
With size
correction

R2 p R2 p R2 p

Platyrrhini 0.459 0.001 0.437 0.001 0.434 0.001
Cercopithecoidea 0.39 0.001 0.397 0.001 0.389 0.001
Hominoidea 0.352 0.001 0.305 0.001 0.304 0.001

Table 6 – Geodesic and edge set distance calculated between UPGMA trees of the 3D data
and 2D data with and without size correction. We report also the distances pooling the
data by species and sex.

Geodesic distance Edge set distance
Size correction No Yes No Yes

Not pooled 2.47% 2.09% 69 59
Pooled by species 1.82% 1.34% 0 0

Pooled by species and sex 2.5 % 2.19% 1 1

not representative of the actual size differences between configurations
as a specific size correction that considers the number of landmarks
and dimensions is needed. The consequence of not performing such
size correction is highly anecdotal as strongly dependent on the type of
configurations entering the analysis and their reciprocal size differences
as well as on the homogeneity of the spatial distribution of landmarks.
Although this effect might be negligible under most circumstances, it
might become severe when the sizes of the configurations are very dif-
ferent or when different sets are constituted by very different number
of landmarks or when the size and shape space is used during subsets
GPAs. Since the introduction of semi-landmark, in many GM studies
the morphology is acquired by using semi-landmarks homogeneously
distributed along curves or surfaces or on specific anatomical regions
(e.g., supraorbital ridges, temporal lines, piriform aperture). The use
of semi-landmark is recommended when on the anatomical structures
under investigation none or a few of landmarks are detectable. Semi-
landmark could be used in both 2D and 3D GM analyses. As stated in
the “Geometric morphometrics, centroid size and biological implica-
tions” section our proposed “size correction” mitigates the problem re-
lated when different sets have a different number of landmarks. We did
not use specifically semi-landmark sets in the real case presented here.
However, in the simulated GM example we show exactly what could
happen when combining two views composed by several landmarks as
happens in semi-landmarks datasets. The performance of combinland
is better than “traditional” method proposed by Adams (1999) when the
number of landmarks of the combined configurations is different. We
demonstrated that, given enough 2D information, combinland retrieves
a relatively faithful representation of the morphological variation of the
ordination space obtained with 3D data.

We used combinland, on six 2D standard anatomical views for 133
skulls belonging to 14 different primate species, obtaining 133×6=798
2D landmark configurations overall. We found that both the general
reciprocal position of species in the ordination plots and variance de-
composition are very similar to each other (Fig. 8– 9). Furthermore,
UPGMA built on PC scores pooled by species, returned the same to-
pological structure (edge set=0, see Tab. 6) and very low geodesic dis-
tance (1.34/100). The shape changes described by the PC scores cal-
culated for the two sets (3D and 2D from combinland) are very close
(Fig. 10). We showed that combinland replicates rather well the suite
of morphological information encoded in original 3D data (Fig. 9 and
Fig. S10–S14). When we asked how much 2D information is enough
to gain the same insight, we found that using less than all anatomical
views the results of 2D and 3D are qualitatively similar using six and
four anatomical views (e.g., edge set distances from 3D results are equal
to 59.00 and 67.73 respectively, for detail see Tab. 2). This is import-
ant because 2D information could not be as rich in real case studies as
in our simulated one.

We therefore emphasize combinland could be safely used to re-
process published data coming from two or more anatomical views of
the same specimens (e.g. different bony elements), or as the final pro-
cessing of data coming from photo shooting, originally designed for
different purposes. This could be useful when dealing with fossilised
remains where the acquisition of 3D data is not easily available (e.g.
the Altamura man, Lari et al., 2015), or even impossible given imper-
fect preservation.

In this study, we did not evaluate the influence of combining land-
mark data in order to face the integration and modularity between pre-
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defined modules. For example one could use combinland in order to
build two views for defining one module and other two views for an-
other. Then, exploring the covariation between these modules is matter
for further investigations as we did not gauge this aspect here.
Also, as stated in the Introduction, our experiment here cannot sim-

ulate the Parallax problem present in real photographs (Mallison and
Wings, 2014; Mullin and Taylor, 2002) due to either lens distortion or
unperfect lens positioning relatively to the specimen. In fact, by us-
ing 3D digital models the projection of landmarks on specific planes
(defined by triplets of points) is eased in comparison to the real life
situation of dealing with photographic devices. A further study based
on the comparison between results coming 3D data analysis and those
from 2D analysis performed on data extracted from real photographs
should expand upon the results we presented here in order to extend
our knowledge about the performance of the procedure reported in this
study. Moreover, the size correction is a standardization strategy aimed
at yielding a reasonable approximation for comparing sizes. Given the
very nature of CS, comparing sizes of different shapes constituted by
landmarks digitized on an external border only and on both external
border and inner region could not be easy as it depends upon land-
mark’s spatial distribution.

References
AdamsD.C., 1999.Methods for shape analysis of landmark data from articulated structures.

Evol. Ecol. Res. 1(8): 959–970.
Adams D.C., Otárola-Castillo E., 2013. geomorph: An r package for the collection and

analysis of geometric morphometric shape data. Methods Ecol. Evol. 4(4): 393–399.
Adams D.C., Rohlf F.J., 2004. Slice DE. Geometric morphometrics: ten years of progress

following the ‘revolution.’ Ital. J. Zool. 71(1): 5–16.
Adams D.C., Rohlf F.J., Slice D.E., 2013. A field comes of age: geometric morphometrics

in the 21st century. Hystrix 24(1): 7–14.
Bastir M., Rosas A., 2006. Correlated variation between the lateral basicranium and the

face: a geometric morphometric study in different human groups. Arch. Oral. Biol.
51(9): 814–824.

Bastir M., Rosas A., 2009. Mosaic evolution of the basicranium in Homo and its relation to
modular development. Evol. Biol. 36(1): 57–70.

Bates K.T., Falkingham P.L., Rarity F., Hodgetts D., Purslow T., Manning P.L., 2010. Ap-
plication of high-resolution laser scanning and photogrammetric techniques to data ac-
quisition, analysis and interpretation in palaeontology. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 38(5): 68–73.

Blumenbach J.F., Bendyshe T., Marx K., Flourens P., Wagner R., Hunter J., 1865. The
Anthropological Treatises of Johann Friedrich Blumenbach. Anthropological Society.

Bookstein F.L., 1986. Size and shape spaces for landmark data in two dimensions. Stat. Sci.
1(2): 181–222.

Bookstein F.L., 1989. Size and shape: A comment on semantics. Syst. Biol. 38(2): 173–
180.

Cardini A., 2014. Missing the third dimension in geometric morphometrics: how to assess
if 2D images really are a good proxy for 3D structures? Hystrix 25(2): 73–81.

Chakerian J., Holmes S., 2012. Computational tools for evaluating phylogenetic and hier-
archical clustering trees. J. Comput. Graph. Stat. 21(3): 581–599.

Cunningham J.A., Rahman I.A., Lautenschlager S., Rayfield E.J., Donoghue P.C.J., 2014.
A virtual world of paleontology. Trends Ecol. Evol. 29(6): 347–357.

Davies T.G., Rahman I.A., Lautenschlager S., Cunningham J.A., Asher R.J., Barrett P.M.,
Bates K.T., Bengtson S., Benson R.B.J., Boyer D.M., Braga J., Bright J.A., Claessens
L.P.A.M., Cox P.G., Dong X.P., Evans A.R., Falkingham P.L., Friedman M., Garwood
R.J., Goswami A., Hutchinson J.R., Jeffery N.S., Johanson Z., Lebrun R., Martínez-
Pérez C., Marugán-Lobón J., O’Higgins P.M., Metscher B., OrliacM., Rowe T.B., Rück-
lin M., Sánchez-Villagra M.R., Shubin N.H., Smith S.Y., Starck J.M., Stringer C., Sum-
mers A.P., Sutton M.D., Walsh S.A., Weisbecker V., Witmer L.M., Wroe S., Yin Z.,
Rayfield E.J., Donoghue P.C.J., 2017. Open data and digital morphology. Proc. R. Soc.
B Biol. Sci. 284(1852): 20170194.

Davis M.A., Douglas M.R., Collyer M.L., Douglas M.E., 2016. Deconstructing a species-
complex: Geometric morphometric and molecular analyses define species in the West-
ern Rattlesnake (Crotalus viridis). PLoS ONE 11(1): e0146166.

DeQuardo J.R., Keshavan M.S., Bookstein F.L., Bagwell W.W., Green W.D.K., Sweeney
J.A., Haas G.L., Tandon R., Schooler N.R., Pettegrew J.W., 1999. Landmark-based
morphometric analysis of first-episode schizophrenia. Biol. Psychiatry 45(10): 1321–
1328.

Dryden I.L., Mardia K.V., 2016. Statistical shape analysis, with applications in R: Second
edition.

Gower J.C., 1975. Generalized procrustes analysis. Psychometrika 40(1): 33–51.
Jungers W.L., Falsetti A.B., Wall C.E., 1995. Shape, relative size, and size-adjustments in

morphometrics. Am. J. Phys. Anthropol. 38(S21): 137–161.
Kendall D.G., 1977. The diffusion of shape. Adv. Appl. Probab. 9(3): 428–430.
Klingenberg C.P., 2013. Visualizations in geometric morphometrics: how to read and how

to make graphs showing shape changes. Hystrix, Ital. J. Mammal. 24(1): 15–24.
Klingenberg C.P., McIntyre G.S., Zaklan S.D., 1998. Left-right asymmetry of fly wings

and the evolution of body axes. Proc. R. Soc. B Biol. Sci. 265(1402): 1255–1259.
Lari M., Di Vincenzo F., Borsato A., Ghirotto S., Micheli M., Balsamo C., Collina C.,

De Bellis G., Frisia S., Giacobini G., Gigli E., Hellstrom J.C., Lannino A., Modi A.,
Pietrelli A., Pilli E., Profico A., Ramirez O., Rizzi E., Vai S., Venturo D., Piperno
M., Lalueza-Fox C., Barbujani G., Caramelli D., Manzi G., 2015. The Neanderthal in
the karst: first dating, morphometric, and paleogenetic data on the fossil skeleton from
Altamura (Italy). J. Hum. Evol. 82(1): 88–94. doi:10.1016/j.jhevol.2015.02.007

Mallison H., Wings O., 2014. Photogrammetry in paleontology–a practical guide. J. Pale-
ontol. Tech.

Meloro C., Cáceres N.C., Carotenuto F., Sponchiado J., Melo G.L., Passaro F., Raia P.,
2015. Chewing on the trees: Constraints and adaptation in the evolution of the primate
mandible. Evolution 69(7): 1690–1700.

Meloro C., Hunter J., Tomsett L., Portela Miguez R., Prevosti F.J., Brown R.P., 2017. Evol-
utionary ecomorphology of the Falkland Islands wolf Dusicyon australis. Mamm. Rev.
47(2): 159–163.

Mullin S.K., Taylor P.J., 2002. The effects of parallax on geometric morphometric data.
Comput. Biol. Med. 32(6): 455–464.

Neaux D., Sansalone G., Ledogar J.A., Ledogar S.H., Luk T.H.Y., Wroe S., 2018. Basicra-
nium and face: Assessing the impact of morphological integration on primate evolution.
J. Hum. Evol. 118: 43–55.

Olsen A.M., Westneat M.W., 2015. StereoMorph: An R package for the collection of 3D
landmarks and curves using a stereo camera set-up. Methods Ecol. Evol. 6(3): 351–356.

Owen M., Provan J.S., 2011. A fast algorithm for computing geodesic distances in tree
space. IEEE/ACM Trans. Comput. Biol. Bioinforma. 8(1): 2–13.

Piras P., Buscalioni A.D., Teresi L., Raia P., Sansalone G., Kotsakis T., Cubo J., 2014.
Morphological integration and functional modularity in the crocodilian skull. Integr.
Zool. 9(4): 498–516.

Piras P., Marcolini F., Raia P., Curcio M., Kotsakis T., 2010. Ecophenotypic variation and
phylogenetic inheritance in first lower molar shape of extant Italian populations of Mi-
crotus (Terricola) savii (Rodentia). Biol. J. Linn. Soc. 99(3): 632–647.

Piras P., Teresi L., Buscalioni A.D., Cubo J., 2009. The shadow of forgotten ancestors dif-
ferently constrains the fate of Alligatoroidea and Crocodyloidea. Glob. Ecol. Biogeogr.
18(1): 30–40.

Piras P., Teresi L., Traversetti L., Varano V., Gabriele S., Kotsakis T., Raia P., Puddu P.E.,
Scalici M., 2016. The conceptual framework of ontogenetic trajectories: Parallel Trans-
port allows the recognition and visualization of pure deformation patterns. Evol. Dev.
18(3): 182–200.

Ponton D., 2006. Is geometric morphometrics efficient for comparing otolith shape of dif-
ferent fish species? J. Morphol. 267(6): 750–757.

Profico A., Bellucci L., Buzi C., Di Vincenzo F., Micarelli I., Strani F., Tafuri M.A., Manzi
G., 2018a. Virtual anthropology and its application in cultural heritage studies. Stud.
Conserv. 64(6): 1–14.

Profico A., Schlager S., Valoriani V., Buzi C., Melchionna M., Veneziano A., Raia P.,
Moggi-Cecchi J., Manzi G., 2018b. Reproducing the internal and external anatomy of
fossil bones: two new automatic digital tools. Am. J. Phys. Anthropol. 166(4): 979-986.

Profico A., Veneziano A., Buzi C., Melchionna M., Raia P., 2019. Geometric Morphomet-
rics Analyses. https://github.com/Arothron.

Rohlf F.J., 2000. On the use of shape spaces to compare morphometric methods. Hystrix
11(1): 9–25.

Rohlf F.J., Corti M., 2000. Use of two-block partial least-squares to study covariation in
shape. Syst. Biol. 49(4): 740–753.

Rohlf F.J., Marcus L.F., 1993. A revolution morphometrics. Trends Ecol. Evol. 8(4): 129–
132.

Sansalone G., Kotsakis T., Piras P., 2015. Talpa fossilis or Talpa europaea? Using geomet-
ric morphometrics and allometric trajectories of humeral moles remains from Hungary
to answer a taxonomic debate. Palaeontol. Electron. 18(2): 1–17.

Sokal R.R., Michener C., 1958. A statistical method for evaluating systematic relationships.
Varano V., Gabriele S., Teresi L., Dryden I.L., Puddu P.E., Torromeo C., Piras P., 2017.

The TPS Direct Transport: A New Method for Transporting Deformations in the Size-
and-Shape Space. Int. J. Comput. Vis. 124(3): 384–408.

Varano V., Piras P., Gabriele S., Teresi L., Nardinocchi P., Dryden I.L., Torromeo C., Puddu
P.E., 2018. The decomposition of deformation: New metrics to enhance shape analysis
in medical imaging. Med. Image Anal. 46: 35–56.

Veneziano A., Landi F., Profico A., 2018. Surface smoothing, decimation, and their effects
on 3D biological specimens. Am. J. Phys. Anthropol. 166(2): 473–480.

Viscosi V., Cardini A., 2011. Leaf morphology, taxonomy and geometric morphometrics:
A simplified protocol for beginners. PLoS ONE 6(10): e25630.

Weber G.W., 2005. Virtual anthropology. Am. J. Phys. Anthropol. 156(S59): 22–42.

Associate Editor: P. Colangelo

Supplemental information
Additional Supplemental Information may be found in the online version of this arti-
cle:
Figure S1 3D landmark configuration shown on a specimen of Macaca arctoides.
Table S2 List of the samples used.
Figure S3 The six 2D landmark configurations showed on a specimen of M.

arctoides.
Table S4 List of the landmark used.
Figure S5 Cluster analysis of the shape in the simulated case study.
Figure S6 Plot of the first two PCs of the 3D and 2D data pooled by species.
Figure S7 Cluster analysis of the PCs pooled by species and gender of the 3D and

2D data.
Figure S8 Plot of the first two Principal Components for the 2D (left) and 3D (right)

data.
Table S9 Procrustes distances, expressed as percentage of the maximum distance

allowed, between 2D data and 3D data.
Figure S10 Comparison of the shape variation coming from 3D and 2D datasets

along the anterior view.
Figure S11 Comparison of the shape variation coming from 3D and 2D datasets along

the posterior view.
Figure S12 Comparison of the shape variation coming from 3D and 2D datasets

along the superior view.
Figure S13 Comparison of the shape variation coming from 3D and 2D datasets

along the inferior view.
Figure S14 Comparison of the shape variation coming from 3D and 2D datasets

along the left-lateral vie.
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